Agarose plug instillation causes goblet cell metaplasia by activating EGF receptors in rat airways.

نویسندگان

  • H M Lee
  • K Takeyama
  • K Dabbagh
  • J A Lausier
  • I F Ueki
  • J A Nadel
چکیده

We hypothesized that foreign bodies in airways cause inflammation leading to goblet cell metaplasia. Instilled agarose plugs lodged in the bronchi of pathogen-free rats caused a time-dependent increase in Alcian blue-periodic acid-Schiff staining that was detected within 24 h and markedly increased at 72 h. Control bronchi contained no pregoblet or goblet cells, but plugged bronchi contained many pregoblet and goblet cells and a decrease in nongranulated secretory cells. In situ hybridization showed no expression of MUC5AC in control airways, but plugged airways showed a marked expression. Control bronchi showed sparse staining for epidermal growth factor receptor (EGFR) protein, but plugged bronchi showed intense EGFR staining in the epithelium. Pretreatment with an EGFR tyrosine kinase inhibitor (BIBX1522) prevented Alcian blue-periodic acid-Schiff staining and MUC5AC gene expression in plugged bronchi. Pretreatment with tumor necrosis factor-alpha neutralizing antibody or pretreatment with cyclophosphamide abolished plug-induced EGFR protein expression and goblet cell metaplasia. Thus instillation of agarose plugs induces profound goblet cell metaplasia by causing EGFR expression and activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epidermal growth factor system regulates mucin production in airways.

Goblet-cell hyperplasia is a critical pathological feature in hypersecretory diseases of airways. However, the underlying mechanisms are unknown, and no effective therapy exists. Here we show that stimulation of epidermal growth factor receptors (EGF-R) by its ligands, EGF and transforming growth factor alpha (TGFalpha), causes MUC5AC expression in airway epithelial cells both in in vitro and i...

متن کامل

Epidermal growth factor receptor activation by epidermal growth factor mediates oxidant-induced goblet cell metaplasia in human airway epithelium.

Mucus overproduction in inflammatory and obstructive airway diseases is associated with goblet cell (GC) metaplasia in airways. Although the mechanisms involved in GC metaplasia and mucus hypersecretion are not completely understood, association with oxidative stress and epidermal growth factor receptor (EGFR) signaling has been reported. To explore the mechanisms involved in oxidative stress-i...

متن کامل

Effects of matrix metalloproteinase inhibitor on LPS-induced goblet cell metaplasia.

Bacterial infections of the lung are known to induce inflammatory responses, which lead to mucus hypersecretion. Moreover, mucin synthesis in the airways has been reported to be regulated by neutrophilic inflammation-induced epidermal growth factor receptor (EGFR) expression and its activation. Furthermore, matrix metalloproteinases (MMPs), especially MMP-9, have been reported to promote the tr...

متن کامل

PAF mediates cigarette smoke-induced goblet cell metaplasia in guinea pig airways.

Goblet cell metaplasia is an important morphological feature in the airways of patients with chronic airway diseases; however, the precise mechanisms that cause this feature are unknown. We investigated the role of endogenous platelet-activating factor (PAF) in airway goblet cell metaplasia induced by cigarette smoke in vivo. Guinea pigs were exposed repeatedly to cigarette smoke for 14 consecu...

متن کامل

Bcl-2 sustains increased mucous and epithelial cell numbers in metaplastic airway epithelium.

Bcl-2, an inhibitor of apoptosis, is expressed in LPS-induced metaplastic goblet cells of rat airways. The present study investigated expression of Bcl-2 in airway mucous cells of persons with cystic fibrosis and tested in rats and mice whether its expression is responsible for sustaining metaplastic mucous cells. A significantly higher percentage of mucous cells expressed Bcl-2 in humans with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 278 1  شماره 

صفحات  -

تاریخ انتشار 2000